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ABSTRACT

Background: Treatment of neurodegenerative diseases is likely to be most beneficial in the very
early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic
structural MRI classification methods for detecting subtle degenerative change. The availability
of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the
performance of such methods in gene mutation carriers who are free of symptoms.

Methods: Using the gray matter segment of MRI scans, this study explored the usefulness of a
multivariate support vector machine to automatically identify presymptomatic HD gene mutation
carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and
95 age- and sex-matched controls was studied. The PSC group was subclassified into three
groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation
size and age.

Results: Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years
were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when
regions affected by the disease were selected a priori for analysis. Performance was at chance
when the probability of developing symptoms in 5 years was less than 10%.

Conclusions: Presymptomatic Huntington disease gene mutation carriers close to estimated diag-
nostic onset were successfully separated from controls on the basis of single anatomic scans,
without additional a priori information. Prior information is required to allow separation when
degenerative changes are either subtle or variable. Neurology® 2009;72:426–431

GLOSSARY
AD � Alzheimer disease; CI � confidence interval; DWI � diffusion-weighted imaging; FWE � family-wise error; HD � Hun-
tington disease; PSC � presymptomatic Huntington disease gene mutation carrier; ROI � region of interest; SVM � support
vector machine; VBM � voxel-based morphometry.

Group studies in familial Alzheimer disease (AD)1 or Huntington disease (HD)2 have shown
substantial neurodegeneration before the onset of typical clinical symptoms. Preclinical degen-
eration, detectable by standard MRI scans, implies a substantial functional reserve, which
indicates that therapeutic attempts to limit degenerative damage are disadvantaged when de-
layed until a disease is manifest clinically. Consequently, there is a principled need for accurate,
early, preclinical diagnosis. Time-efficient methods, applicable with little or no expert knowl-
edge, would be advantageous for screening large numbers of subjects.

Machine-learning techniques meet these requirements. They are fully automatic and have
been used to successfully separate magnetic resonance (MR) images on the basis of group
characteristics such as sex, or presence/absence of disease.3-11 Methods such as support vector
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machines (SVMs)12 require well-defined train-
ing images from which they learn to separate
diagnostic categories. The application of au-
tomatic classification methods is often limited
by lack of a diagnostic gold standard for vali-
dation.

Presymptomatic HD is an important model
for study of the earliest stages of neurodegenera-
tion and atrophy because this autosomal domi-
nant disorder has complete penetrance and
results from an expanded CAG trinucleotide re-
peat in the huntingtin gene that is readily detect-
able in the blood.13

Because machine-learning techniques can
potentially be used in large, multicenter treat-
ment trials,14,15 we sought to explore SVM
performance on images from several centers.
Encouraging SVM performance with HD
will support the strategy of using a similar ap-
proach to identify a preclinical phase in other
neurodegenerative disorders, such as AD.

METHODS Subjects. A cohort of 96 PSCs and 95 control
subjects enrolled in the PREDICT-HD study15 were included.
PREDICT-HD is an international multicenter study to discover
biologic and refined clinical predictors of disease progression in
PSCs. Inclusion criteria for PSCs included at least 39 CAG re-
peats in the HD gene, whereas controls had fewer than 30 re-
peats. Exclusion criteria for both PSCs and controls included
evidence of unstable illness, alcohol or drug abuse, a history of
special educational needs, and a history of other CNS diseases or
events.15 All T1-weighted anatomic brain MRI scans were
checked for artifacts using a semiautomatic quality control pro-
cedure at the time of acquisition.

PSCs were stratified by their estimated time to clinical man-
ifestation based on age and CAG repeat length (algorithm avail-
able at http://www.cmmt.ubc.ca/clinical/hayden).16 This is a
robust model for age of disease diagnosis based on data from
almost 3,000 gene carriers. As in previous work on the
PREDICT-HD data,15 we used the algorithm to estimate the
probability of developing unequivocal signs of HD in the next 5
years. PSCs were classified into three equally sized subgroups

with 1) less than 10%, 2) 10% to 33%, and 3) more than 33%

probability of clinical manifestation in 5 years. Controls were

matched to each PSC subgroup to achieve the best possible age

match; a control subject could serve in more than one group. See

the table for full details. The study was performed according to

the Declaration of Helsinki and was approved by the ethics re-

view boards of each participating center. All subjects gave written

informed consent.

MRI and processing. T1-weighted MRI scans were acquired

using a three-dimensional volumetric spoiled gradient echo se-

ries on 1.5-tesla scanners (echo time 3 msec, repetition time 18

msec, flip angle 20°, field of view 240 mm, 124 slices at 1.5 mm

thickness, matrix size 256 � 192). Because data were acquired

from several centers, different hardware was used so small devia-

tions from these sequence parameters were allowed. Where avail-

able, phased arrays were preferred over quadrature head coils

because of increased signal-to-noise ratio. There was no system-

atic difference in scanning parameters between groups because

participating centers acquired data from PSCs and controls using

the same setup. Images were first segmented into gray matter,

white matter, and CSF using statistical parametric mapping soft-

ware, SPM5 (Wellcome Trust Centre for Neuroimaging, Insti-

tute of Neurology, University College London, UK; http://

www.fil.ion.ucl.ac.uk/spm). Then, gray matter segments were

normalized to the population templates generated from all study

images using a diffeomorphic registration algorithm.17 A separate

“modulation” step18 was used to ensure that the overall amount

of each tissue class remained constant after normalization. After

these steps, the value of a voxel reflects the local gray matter

volume.

To evaluate and illustrate the extent of differences in regional

gray matter volume between controls and the three PSC sub-

groups, we performed an analysis using voxel-based morphome-

try (VBM)18,19 and applied an exploratory threshold at p � 0.001

(uncorrected for multiple comparisons). After preprocessing as

above, we smoothed with an 8-mm gaussian kernel and con-

trasted PSC groups with controls to identify areas with gray mat-

ter atrophy. The T scores at the voxels showing the most

significant differences in each contrast are reported.

Support vector classification. In what follows, we provide

an intuitive understanding of linear SVMs and how they are

implemented in the current work. A more technical account of

this method can be found in the e-Methods on the Neurology®

Web site at www.neurology.org, in textbooks,12,20 or in our pre-

vious work.6,7

Table Demographic information on whole group and on subgroups separated by estimated probability of developing symptoms in 5 years

Full group Near group Mid group Far group

HD Controls HD Controls HD Controls HD Controls

n 96 95 32 32 32 32 32 32

Sex, F/M 68/28 66/29 21/11 21/11 26/6 24/8 21/11 24/8

Age at MRI scan, mean
(range), y

41.8 (25–70) 44.6 (20–63) 46.1 (28–70) 47.2 (30–63) 44.2 (28–70) 44.6 (20–63) 35.1 (25–54) 36.45 (19–52)

CAG, mean (range) 42.9 (39–61) NA 44.69 (40–61) NA 42.46 (39–48) NA 41.47 (39–45) NA

Probability of symptom onset
in next 5 y, %

25.1 (0.7–76.1) NA 49.29 (35–76) NA 22.1 (10–33) NA 3.87 (0.7–9.5) NA

HD � Huntington disease; NA � not applicable.
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For the present work, we focused on the gray matter seg-
ment, because any neurodegenerative process is likely to manifest
in that tissue class. We used an off-the-shelf linear SVM (http://
www.csie.ntu.edu.tw/˜cjlin/libsvm/). In a first step, all but one
scan from PSCs and controls is used to train an SVM. During
this training process, all image characteristics (i.e., the gray mat-
ter volume in a brain region as reflected by the value of a voxel)
are used to define a boundary that separates diagnostic groups.
Figure 1 illustrates the principles of SVM in two dimensions
(i.e., each subject has two image characteristics or voxels). In
practice, there would be several thousand voxels (features) in an
image, each of which forms a separate dimension. During this
training process, those subjects that are most difficult to separate
are used to define the boundary between the diagnostic groups.
Sometimes there is too much overlap between the groups, in
which case higher accuracy can be achieved by allowing some of
the training data to fall on the wrong side of the boundary. A

parameter C is used to control how much misclassification of the
training data is allowable.

The next step is to ensure that this boundary is useful to
correctly separate new data. These new data do not contribute to
the definition of the classification boundary. In the clinical set-
ting, this new data could come from a patient to be diagnosed. In
our implementation, we used a further round of training and
testing to optimize the C parameter (called a three-way split
validation). We report the average accuracy, i.e., what percentage
of scans left out of the training set were assigned to their correct
group. This percentage can be converted into a p value by as-
sumption of a binomial distribution with a chance probability of
correct classification of 0.5.

Another way to check whether the classification boundary
relies on meaningful information is to localize the pattern of
voxels characterizing differences between groups (figure 2 and
e-Methods).

Region of interest approach. Optimally, classification
methods should be capable of detecting preclinical degeneration
without additional disease-specific information. Such informa-
tion will often be unavailable because symptoms may be subtle
and nonspecific or absent, or the earliest site of pathology is
unknown. In an additional analysis, we explored whether an im-
provement of classification accuracy accrues with addition of
prior information about regions known to be affected by the
disease. HD, like other neurodegenerative diseases, does not af-
fect all brain areas to a similar extent. We used a group compari-
son between normal and PSC scans with VBM to generate a
weighted map of areas involved by preclinical neurodegenera-
tion. Meaningful classification by SVMs has to generalize to new
images. If regions involved in a disease process had been identi-
fied from the same data set later used for classification, any dif-
ferences could be specific only to the scans of that data set, but
not to the underlying disease process in general. Therefore, to
ensure generalization of results, a separate data set of PSC and
control scans was acquired using three-dimensional structural
magnetic resonance images from 42 PSCs and control subjects to
define the regions of interest (see table e-1 for demographic de-
tails). We used a 1.5-tesla Siemens Sonata scanner (T1-weighted
MDEFT sequence, 176 slices at 1-mm thickness, sagittal, phase
encoding in anterior/posterior, field of view 224 � 256 mm2,
matrix 224 � 256, repetition time 20.66 msec, echo time 8.42

Figure 2 Brain regions most relevant for group separation

Voxels most relevant for the separation of Huntington disease mutation carriers and controls in the group closest to clinical presentation. A dual color bar
is used. Blue to green areas indicate higher gray matter density, increasing the likelihood of classification as normal. Red and yellow show regions where
higher gray matter density characterizes asymptomatic Huntington disease mutation carriers. See main text for interpretation. Results are overlaid on the
mean gray matter compartment from all subjects.

Figure 1 Illustration of the concept used in
support vector machines

The algorithm tries to find a (multidimensional) boundary
that maximizes the distance between presymptomatic
Huntington disease gene mutation carriers (squares)
and controls (circles). The figure reduces the problem to
two dimensions or voxels for the purpose of illustration
only. Cases wrongly classified (with gray connectors) are
penalized with a specific weight (see Methods for
details).
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msec, inversion time 640 msec, flip angle 25 degrees, fat satura-
tion, bandwidth 178 Hz/pixel).21

We used the t value at each voxel to evaluate its involvement
in the disease process. To reduce the number of voxels, we re-
stricted this analysis only to those voxels surviving correction for
multiple comparisons across whole brain using a FWE correc-
tion as implemented in SPM5. To assess the performance of
such a region of interest (ROI) definition process, we also gener-
ated a weighted image with a more liberal threshold of p � 0.01
(uncorrected; see figure e-1 for resulting T-maps).

Previous imaging studies have shown that the striatum is
most affected and that it atrophies early in HD.2 The degree of
atrophy is comparable to the early degeneration of the hip-
pocampus in AD. In the extreme case, we selected our region for
categorization as that with the coordinates of the single voxel
showing the greatest atrophy (indexed by the highest VBM T
score) in the VBM comparison of the separate groups of PSCs
and control. To include maximum a priori information from
this comparison, we applied the same amount of gaussian
smoothing to the classifier images as applied to the VBM ROI-
defining image set before extracting the voxel value.

RESULTS Categorization accuracy depended
greatly on estimated time to disease presentation.
Subjects with at least a 33% chance of developing
unequivocal signs of HD in 5 years were correctly
assigned, with no a priori information, to the PSC
group 69% (p � 0.002) of the time. Best perfor-
mance (82.8%; p � 0.001) was obtained with the
weighted VBM voxel procedure. Classification accu-
racy for the PSC group furthest from clinical onset
was at chance. Figure 2 illustrates that the striatum
was critical for a separation of controls from pre-
clinical HD subjects. The distribution of blue and
green colors also indicates that in regions includ-
ing the insula and parts of the parietal cortex, re-
duced gray matter was indicative of PSC status.
The effect of different levels of a priori informa-
tion for each of the groups is demonstrated in fig-
ure 3. Table e-2 summarizes all the results and
provides specificity and sensitivity values together
with confidence intervals (CIs).

Even at an exploratory threshold, no significant
VBM gray matter differences were found between
controls and the PSC group with a less than 10%
probability of developing symptoms in 5 years. Sub-
jects closer to estimated onset and subjects from all
subgroups combined showed the expected gray mat-
ter loss in the striatum compared with controls (fig-
ure e-2). In these group comparisons, the maximal
difference was located in striatum (combined group
T � 7.67; group closest T � 7.98; middle group T �

7.39).

DISCUSSION We sought to characterize the ability
of a fully automatic image classification method to
separate structural MRI brain scans of HD gene car-
riers in the presymptomatic phase from those of con-

trols. Subjects with a more than 33% probability of
clinical diagnosis of HD within 5 years were correctly
separated from controls 69% of times without any a
priori regional weighting. Although this accuracy is
clearly above chance (see CIs in figure 3), it is no-
where near perfect. It is interesting that whole brain
classification accuracy—this study—falls substan-
tially below the 82% correct classification achieved in
an earlier study using an SVM on diffusion-weighted
imaging (DWI) data less readily available in clinical
practice than T1-weighted data.6 Subjects in the
DWI study were unrelated to those of this one and as
a group were estimated to be on average 19 years
from clinical presentation. Although CIs will over-
lap, the suggestion is that diffusion imaging is better
at classifying HD images. This conclusion is at odds
with results from (univariate) VBM studies that show
highly significant differences between PSC and con-
trol group T1-weighted images2 that are larger than
those obtained using DWI.22,23 The differences in ac-
quisition time (10 minutes for a T1 compared with
22 minutes [12 minutes without cardiac gating] for a
DWI sequence) and the fact that the study reported
here used a multicenter data set are two likely expla-
nations for this apparent disagreement.

As expected, classification accuracy improved for
PSC subjects closest to estimated symptom onset.
The best performance was achieved when brain areas
used for classification were limited to regions identi-
fied by VBM as affected in the PSC group. In gen-

Figure 3 Classifications accuracy for different
levels of a priori information

Illustration of accuracy in each subgroup and with all sub-
jects pooled together for different levels of a priori informa-
tion. Error bars indicate 95% confidence intervals
(calculated by the efficient-score method29; http://faculty.
vassar.edu/lowry/clin1.html). One-sided error bars are used
for illustration purposes. FWE � family-wise error.
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eral, a multivariate method that includes information
from various brain areas should show favorable per-
formance when more voxels (reflecting the volume of
more brain regions) yield relatively more signal than
noise. Figure 2 illustrates that group separation relies
heavily on voxels within the caudate nucleus and par-
ticularly its head. Reduced gray matter reflected PSC
status in insula and parietal cortex also; findings well
in line with previous imaging studies.2,24 The figure
also displays cortical voxels scattered throughout the
brain, without a regionally specific pattern. These
scattered voxels constitute a source of “noise,” which
explains the superior performance of classification
using the caudate alone, a procedure equivalent to
minimizing noise.

Figure 3 illustrates the benefit of various levels of
a priori information, which becomes most obvious
for subjects in the middle group but also when all
subjects are combined. In contrast, no meaningful
classification accuracy was achieved in subjects far
from estimated clinical onset, no matter how much a
priori information was used.

VBM-derived prior information from an inde-
pendent set of images served two purposes. We
avoided overoptimistic claims and any circular logic
about result generalization, which would have arisen
had we created VBM-weighted images from the im-
ages that were also classified with SVM. VBM analy-
sis also created a specific weighted group image that
characterized the preclinical HD phase. The creation
of similarly informative images could have been
achieved using atlas-based masks of putamen and
caudate. The approach we present here is more flexi-
ble. It allows the creation of disease-specific weighted
images when disease distribution does not respect an-
atomic boundaries or is more widespread. A further
advantage of our approach is that each voxel obtains
a specific weighting. In contrast, anatomically based
masks are normally binary and hence less specific. As
expected, no improvement of classification was
achieved when VBM derived T-maps were binarized
(data not shown). Relatively labor-intensive manual
outlining methods, often used in HD,25 would be
less suitable for screening than the one presented
here. A study comparing both approaches in early
HD26 found that both methods reliably showed ex-
pected degeneration, but VBM detected additional
changes in brain regions not selected a priori.

Performance was at chance level when we attempted
to separate the subgroup far from clinical presentation
from matched controls. Depending on the individual
number of CAG repeats and age, subjects in this group
were an estimated 20 years or more from developing
signs of disease. It is a matter of debate when striatal
degeneration starts. A large-scale study based on striatal

volume change in PSC27 illustrates that decline of stria-
tal volume is very subtle in subjects with more than 20
years to estimated onset but becomes substantially
steeper around 15 years beforehand. VBM analysis con-
firms that structural changes were either absent or too
subtle in the group farthest from onset to be detected in
a group-level VBM analysis. In contrast, bilateral striatal
gray matter loss found in the other subgroups confirms
previous work using VBM.2

Classification performance was far from perfect.
There is a wide range of techniques for extracting image
characteristics to feed into various classification meth-
ods.3,9,11,28 The purpose of our study was to test gray
matter–based SVM classification successfully applied to
patients with mild to moderate AD on preclinical HD.7

The study in AD demonstrated the utility when cases
were at a point where clinical signs were significant and
disease-related atrophy was significant. Here we use ge-
netic information not only to recruit individuals before
the manifestation of any clinical deterioration, but also
to estimate years to onset of disease and thus make
use of the technique to detect the earliest and most
subtle degenerative change in the brain. Both
studies used data acquired at multiple imaging
centers. Although this has to be shown for each
disease, our work suggests that data can be ex-
changed between centers. If this proves true for
other diseases, it would make excessive data acqui-
sitions unnecessary and would facilitate the appli-
cation to rarer neurodegenerative disorders.

Our results show that fully automatic detection of
preclinical degeneration is possible so that identified
subjects could become candidates for longitudinal
follow-up in clinical trials, possibly many years be-
fore clinical presentation.27 It will be another topic of
future studies to test whether multivariate classifica-
tion methods such as those presented here can play a
part in the detection of longitudinal changes along-
side currently used, well-established imaging, cogni-
tive, and behavioral changes.27
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